CHAPTER-3

HEAT EQUATIONS

Structure

3.1 Heat Equation — Fundamental solution
3.2 Mean value formula
3.3 Properties of solutions
3.4 Energy methods for Heat Equation
3.1 Definition: The non- homogeneous Heat (Diffusion) equation is
u, —Au=f(xt) (D)

where xeU <R", f:Ux[0,0)—>R, u:Ux|[0,0)—>R, the Laplacian A is taken w.r.t. spatial

variable x, and the function f is given while we have to solve this equation for the unknown function u.
If f (x,t) =0, then the equation
U -Au=0 o (2)
is known as homogeneous heat equation.

Physical interpretation: In typical applications, the Heat equation represents the evolution in time of the
density u of some quantity such as Heat, chemical concentration, etc. If V < U is any smooth subregion,
the rate of change of the total quantity within V equals the negative of the net flux through oV .

d =
EJUdX = —i F.vds

F being the flux density. Thus
u, =—divF .. (3)

where V is arbitrary.
Theorem: (Fundamental Solution)

Find the fundamental solution of homogeneous Heat equation
u-Au=0 in  Ux[0,) ()

where U — R" is open.
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Proof: It can be seen from the equation (1) that first order derivate involves w.r.t. to t and second order

derivate w.r.t. the space variables X, X,,..., X, . Consequently, if u solves the equation (1), so does
u(Ax,A’t) for 1eR.

So, we seek a solution of equation (1) of the form

1 X
u(x,t)—ﬁvitﬁj e (2)

for XxeR", t>0.Here, «, [ are constants to be determined and the function v: R" — R must be find.

Put y = iﬂ in equation (2), we have
t

u(x,t)ztiav(y) .. (3)

Differentiating (3) w. r. t. tand x

-a SyDv

Y% :ta+1v(y)_ta+1

1
tcx+2ﬂ

Av

Using these expression in equation (1) and simplifying
av(y)+,6’yDv+t2%Av=O @)

Now, we simplify the equation (4) by putting g = 1 , S0 that the transformed equation involves the

2
variable y only and the equation is

av(y)+By.Dv+Av=0 .. (5
We seek a radial solution of equation (5) as
v(y)=w(r) where r=|y| ...(6)

where W:R > R.
From equation (5) and (6), we have
alyl
oy
n yi ar 1 1 yi2
and VnyI =W (r) (?ja +W (I‘) {F - —3}

i r

v, =w(y) =wﬂm%- Cly|=1)
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Av(y)=w"+co'(r)(n—_lj

r

Using value of Av(y) in equation (4), we get

W (r n-=1) |
W+(E+TJW+C¥W:O (7)

Now, if we set ¢ zg and multiply by r"in equation (7).

Then we have

(r“-lw')'+(rn;N)' =0 .. (8)

Integrating equation (8)

N1,

rw .
rw +7 =a , where a is a constant

Assuming limw,w'=0, we conclude a=0,so

r—oo

W =—=rw ... (9
> €)
Integrating again, we have some constant b
w=be 74 ... (10)

where b is the constant of integration.

Combining (2) and (10) and our choices for ¢, g, we conclude that

2
Leﬂ solves the Heat equation (1)

t% 4t
To find b, we normalize the solution
_[ u(x,t)dx=1

R"

t%Jﬂexadx:l

(2t =1

n
t2
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1

b=
(47[)%

Here the function
1 - eXA;(XGR“,t>0)
D (x,t)= (4rt)”

0 , (Xe R" t SO)

is called the fundamental solution of the Heat equation.
Remarks: (i) @ is singular at the point (0,0).
(ii) Sometimes, we write ®(x,t) = CD(|x|,t) to emphasise that the fundamental solution is radial in the
variabler.
Theorem: Solution of Initial value problem
Solve the initial value (Cauchy) problem
u —Au=0 in R" x(0,0) ..()
u=g on R"x{t=0} .(2)

associated with the homogeneous Heat equation, where g C(R”)m L” (R”).

1 K ]
Proof: Let ®(x,t)= 7 © 4; (xeR"t>0) .. 3)
(4nt)’?
be the fundamental solution of the equation (1). From earlier article, we note that (x,t) — ®(x,t) solves

the Heat equation away from the singularity (0,0) and thus so does (x,t) > ®(x—,t) for each fixed y e R"
. Consequently, the convolution

=
u(x,t):WRjﬂe “ g(y)dy
:Rjncp(x—y)g(y)dy (4
Here, we will show that
(i) ueC”(R"x(0,»))
(i) u (xt)—Au(xt)=0 (xeR"t>0)

(iii) ( lim u(x,t)=g(x°) foreach point X eR"t>0

x,t)a(x ,0)
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,‘Xz
Proof: (i) Since the function nie 4t js infinitely differentiable with uniform bounded derivative of all
t 2

order on R" x[8,0) for §>0.

So ueC”(R"x(0,)).
(i) u, = J'nqbt(x—y,t)g(y)dy

AU = J'AQD(x—y,t)g(y)dy

-
2 U —Au=0  (since ®(x—y) is a solution of Heat equation)
(iii) Fix x° eR". Since g is continuous, given £ > 0,3 6 > 0 such that ‘g (y)-9 (x° )‘ < & Whenever
‘y—x°‘<5,ye R".
Then if \X—X°\<g

()= -| o (-0 )0 <"

Rn

< J. q)(x—y,t)‘g(y)—g(xo)‘dy

B(x°,5)

+ .f (D(x—y,t)‘g(y)—g(xo)‘dy

R”—B(xo,é)
=1+ ... (5)
Now I §5I®(x—y,t)dy:s
an

Furthermore, if |x—x°| Sg and |y—x°|> 5 then
|y—x°|s|y—x|+g£|y—x|+%|y—x°|
1
Thus |y_x|25‘y_xo‘

Consequently

J<2|g

- j O (x—y,t)dy

RMB(XO,&)
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7r2

eldtr"dr >0 as t—0"

c “
gt
Hence, if |x—x°| <g and t>0 is small enough, ‘u(x,t)—g(xo)‘<28.

The relation implies that

lim  u(x,t)=g(x°)
(xy)>(¢.0)
xeR" t—>0*

Thus, we have proved that equation u(x,t) given by equation (4) is the solution of the initial value
problem.

Theorem: Non-homogeneous Heat Equation
Solve the initial value problem
u —Au=f in R" x(0,0)
u=0 on R"x{t=0}

associated with the non-homogeneous Heat equation, where f € C? (R” x[O,oo)) and f has compact
support.
Proof:

Define U as

u(x,t)zj';n [e* 1 (y,s)dyds (xeR"t>0) ..()

:j' O (x—y,t—s) f(y,s)dyds .. (2)

where f eC/(R"x[0,0)) and f has compact support.

Then

(i)ueC/(R"x(0,))
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(iu (xt)-Au(xt)=f(xt) (xeR"t>0)

(iii)( )Ilr(n )u(x,t)=0 for each point x° cR" (xeR",t>0)
x,t—>x°,0

Proof: (i) Since @ has a singularity at (0,0) we cannot differentiate under the integral sign. Substituting
the variable x—y =0,t—s =0 and again converting to original variable.

ut(x,t):jj®(y,s)f(x—y,t—s)dyds
D o
Since f C*(R"x[0,:0)) and ®(y,$)is smooth near s=t >0, we compute
ut(x,t):j_[cb(y,s) f (x—y,t—s)dyds
>
+ [ @(y.t) f(x—y,0)dy (By Leibnitz’s rule)

R"

o’ ‘ & i1
)= | D(y, f(x—y,t—s)dyd i, j=1..n
axax, Y M (9:9) o, (X yt=s)dves (i, ] )

Thus, u,D’ueC? (R” x(O,oo)).

(if) Now
ut(x,t)—Au(X,t)ZJ:!CD(%S)K%—AXJf(x—y,t—s)}dyds +Jn(b(y’t)f(x_y’o)dy
chp I [(——A jf(x—y,t_s)}dyds

+i‘é[q)(y,s)ﬁ(;_f—ij f (x—y,t—s)}dyds +F;|;<D(y,t) f (x—y,0)dy

=1, +J, +K .3
Now

J=(I,

+HD f” )]:J'CD (y,s)dyds < ec
0R"
Also, we have
t 0
|g::!'Fz[Kg_Ay)q)(y,s)}f(x—y,t—S)dde +F;[CI)(y,g)f(X—y,t—8)dy
_'[cp(y,t)f(x—y,o)dy

R"

:jq)(y,g)f(x—y,t—g)dy—K .. (4)
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Since @ solves the Heat equation.
Combining (2) —(4), we have

u, (X, t)—Au(x,t)= !gl_r>n0 _[CI)(y,g) f(x—y,t—g)dy
=f(xy) (xeR"t>0)

(iii) u(x,t)=

ot—

.[CD(y,s) f (x—y,t—s)dyds
||u||L°°(R") S”f”L”“(R”)J.,[CD(y’S)dde

t
=[ ][ as =] [t
0
Taking limitas t >0
limu(x,t)=0 foreach xeR".
t—0

3.2 Mean-Value Formula for the Heat Equation
Let U = R" be open and bounded. Fix atime T >0.
Definition: The parabolic cylinder is defined as

U, =U x(O,T]
and the parabolic boundary of U; is denoted by I'; and is defined as

Iy :(UT)_(UT)

L ——

GEETD
. By R

The region Ur
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Interpretation: We interpret U; as being the parabolic interior of Ux[O,T]. We must note that U,
include to top U X{t:T}. The parabolic boundary I'; comprises the bottom and vertical sides of

U x[0,T], but not the top.

Definition (Heat ball): For fixed X€ R",t eRand r > 0, we define

Euiﬁ):%yﬁ)eRM

s<t and d)(x—y,t—s)zrin}

E(X,t;r)is a region in space-time. Its boundary is a level set of fundamental solutions ®(x—y,t—s)

for the Heat equation. The point (X,t) is at the centre of the top. E(X,t;r) is called a Heat ball.

(x.t)

E(x,t;r)

Heat Ball
3.2.1 Theorem: Mean-Value Property for the Heat Equation

Prove that
” | —y)| dyds .. (1)

for each Heat ball E(X,t;r)cU; . It is assumed that U e C; (U, ) solve the homogeneous Heat equation
U —Au=0 in R"x(0,) . (2)

Proof: The formula (1) is known as mean-value formula. We find that the right hand side of (1) involves
only u(y,s) for times s<t. It is reasonable, as the value U(X,t)should not depend upon future times. We
may assume upon translating the space and time coordinates that

x=0,t=0 .. 3)

So we can write Heat ball as

E(r)=E(0,0;r) - (4)
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and set

p(r)= ” (y, s)|y| dyds

=0
” ry,r s dyds (by shifting the variable) .. (5

Differentiating (5), we obtain

0 ffon (S o

2 2
= rnl+1 ” {yiuy [%J+2us (%}} dyds (Again shifting to original ball)
E(r)

=A+B ... (6)
We introduce the useful function
z//z—glog(—47zs)+%+nlogr .. (7)
Then
w =0, on  OE(r) ...(8)
Since,
®(y,—s)=r" on JE(r) ..9)

be definition of Heat ball.
Now, we use (7) to write

l n
B=—T5 Ej(_[) 4usi2=1: y;w, dyds

= —% _[(_[)4nusy/+4zl“usyl y,wdyds ... (10)
E(r 1=

There is no boundary term since y =0 on OE(r).

Integrating by parts with respect to s, we find

B=

r:1L+1 J‘_f _4nusl// + 4iuyr yi‘//sdyds
=1 i1

= ” —4nusa//+4Zu y,( |y| deds
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This implies
¢'(r) =A+B
— _U{ 4nAuy1—%Zn:uyl Y, }dyds
i=1
51
= > EJ'(.[)4nuyll//yl u,y,dyds =0
Therefore, ¢ is constant.
Thus #(r)=limg(t)=u(0,0) {Ilm HM dyds} 4u(0,0)
t—0 t—0 t

2 2
lﬂjj%dyds:ﬂ%dydsﬂ
& S ) S
From equation (4) and (11), we write

u(x,t)=%¢(r)

From (5) and (13), we have

Hence proved.
3.3 Properties of Solution

3.3.1 Theorem: Strong Maximum Principle for the Heat Equation

Assume u e C/ (U; ) nC(U; ) solves the Heat equation in Uy . Then

Q) n}?xu = rT;aTlxu

(i) Furthermore, if U is connected and there exists a point (Xo,to) eU; such that
u(Xy,ty) = maxu

Then u is constant in Uto.

Proof: Suppose there exists a point (X,,t, ) €U; with

.11

.(12)

..(13)

.. (14)
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u(X,t,)=M = maxu

It means that the maximum value of u occur at the point (Xo,to).

Then for all sufficiently small r>0,
E(X:t;r)cU
By using the mean-value property, we have

M =u(X,1t)

ﬂ )| dyds <M .. (1)

E(%o.toir

Since

1 %~ y|2
1=— ———dyds
ar E(XJO.T[):r) (to - 5)2

Form equation (1), it is clear that equality holds only if u is identically equal to M within E(xo,to; r) .
Consequently

u(y,s)=M for all (y,s)€E(%,t;r)

Draw any line segment L in U; connecting (Xo,to)with some other point (yO,So) eU,, with § <f;.
Consider

r,=min{s>s,|u(x,t)=M for all points(x,y)eL,s<t<t,|
Since u is continuous, the minimum is attained. Assume [, >S,.Then
u(z,,1,)=M
for some point (Z,,1,) on LNU; and so
u=M on E(z,,1,;r) forall sufficiently small r>0

Since E(z,, ;1) contains LN{r,—o <t<r} for some small >0, which is a contradiction.

Thus

Hence

u=M on L ...(2)
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Now fix any point x U and any time 0<t<t;. There exists points {X;, X,,...,X,, X} such that the line
segments in R"connecting X;_; to X; liein U for i=1,...,m. (This follows since the set of points in U
which can be so connected to x, by a polygonal path is nonempty, open and relatively closed in U ).
Select times £, > >...>t =t. Then the line segments in R™ connecting (X_,t_;)to (%t )(i=1..,m)
lie in U; . According to step 1, u=M on each such segment and so u(x,t)=M .

Remark: 1. From a physical perspective, the maximum principle states that the temperature at any point
X inside the road at any time (0<t<T) is less than the maximum of the initial distribution or the

maximum of temperature prescribed at the ends during the time interval [0,t].

2. The strong maximum principle implies that if U is connected and u e C? (U, )~C (U, ) satisfies

u—Au=0 in U;
u=0 on U x[0,T]
u=g on Ux{t=0}

where g >0 then u is positive everywhere within U; if g is positive somewhere on U . This is another
illustration of infinite propagation speed for disturbances.
3. Similar results holds for minimum principle just by replacing “max” with “min”.

3.3.2 Theorem: Uniqueness on bounded domains

Let geC(T;), f €C(U;). Then there exists at most one solution u e C/ (U; ) C (U ) of the

initial/boundary-value problem

u —Au=f inU; (1)
u=g onl; '
Proof: If u = Uare two solutions of (1). Then
u —Au=f inU; @)
u=g onl; '
and
u-Au=finU, 5

U= g onI’;
Let w= i(u —U), then from equation (2) and (3), we have

W, —Aw=(u, -0, )-A(u-0)=0
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w=0 on I}

apply previous theorem to W= i(u —G) to get the result.

3.3.3 Regularity

Theorem: Smoothness
Suppose U € C}(U; ) solves the heat equation in Us . Then
ueC”(U,)

This regularity assertion is valid even if u attains non-smooth boundary value on I'; .
Proof: We write

C(xtr)={(y.s)|x-y|<rt-r*<s<t}
To denote the closed circular cylinder of radius r, height r?, and top centre point (X,t) . Fix
(%t ) €U and choose r > 0so small that C=C(X,,t,;r) U, .

Define also the smaller cylinder

f _3 n .r
C :C(Xo,to,zrj,c :C(Xoytoazj,

which have the same top centre point (X;,t,). Extend ¢ =0in (R"x[0,t,])-C

Assume that ueC” (U ) and set v(x,t)=¢ (X t)u(x,t) (xeR",0<t<t,)
Then
V, =¢U, + S U,Av =CAu+2D¢ .Du+uAd
Consequently
v=0 on R"x{t=0} .. (1)
and
V,—Av=¢u-2D¢Du-uAl = in R"x(0,t))

Now, set

t
j @ (x-y,t—s)f(y,s)dyds
0OR

n

We know that
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{Vt—A”: fin R”X(O,to) @

V=0 onR"x{t=0}

Since |V|,|V| < Afor some constant A, previous theorem implies v =1, i.e.
t
jch (x—y,t—s) f(y,s)dyds
0R"

Now suppose (X,t) eC". As ¢ =o0of the cylinder C, (1) and (3) imply

u(x,t)= J'J'CD (x—y,t- s)[ )—AS(y,s))u (y,s)—2D§(y,s).Du(y,s):|dyds

Integrate the last term by parts:

u(x,t)=H[(D(x—y,t—s)(cjs(y,s)+Ag’(y,s)+2DYCD(x—y,t—s).Dg’(y,s))]u(y,s)dyds

If u satisfies only the hypotheses of the theorem, we derive (4) with U° =17, *Ureplacing U,7], being the

standard mollifier in the variables x and t, and let ¢ — 0.

Formula (4) has the form
u(x,t):”K(x,t,y,s)u(y,s)dyds ((X,t)GC")
¢
where
K(xt,y,s)=0 forall points (y,s)eC
Since ¢ =10n C",
Note that K is smoothon C—-C".
We see Uis €~ within C":C[xo,to;%rj

Theorem: Local Estimate for Solutions of the Heat Equation

There exists for each pair of integers k, 1=0,1,..., a constant C,, such that

max
of x e

= k+2|+n+2 ” ”L1 (c(xtir))

for all cylinder C(X,t;%) < C(x,t;r)cU; and all solutions u of the Heat equation in U .
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Proof: Fix some point in U;. Upon shifting the coordinates, we may as well assume the point is (0,0).
1 1
Suppose first that the cylinder C(1)=C(0,0;1) lies in U; . Let C(Ej =C [O,O;Ej

Then
1
U(X,t)=”K(x,t,y,s)u(y,s)dyds [(X,t)GC(ED
c(®)
for some smooth function K .

Consequently,

Dth'u(x,t)| < ” |Dt' DK (x,t, Y, s)||u (v, s)|dyds
c@)

=Cy ”u”u(c(l))
for some constant C,;.
Now suppose the cylinder C(r)=C(0,0;r)liesin U; . Let C(%):C(0,0;%),

We define
v(x,t)=u(rxr’t)
Then V, —AV =0 in the cylinder C(1).

According to (1)

1
DX Dt'v(x,t)| <Cy ||V||L1(c(1)) ((X feC (ED

But Dth'v(x,t):r2'+"kaDt'u(rx,r2t)
1
and v L(c() ZWMU L(c(r)
Therefore,
C
k!
rgzraé); Dx Dtu‘ s r2I+klf:n+2 ”u”Ll(C(r))

Note: If u solves the Heat equation within U+ , then for each fixed time 0 <t <T, the mapping

X—u (X,t) is analytic. However the mapping t—u (X,t) is not in general analytic.
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3.4 Energy Methods

(a) Uniqueness
Theorem: There exists at most one solution u e C/ (U, ) of
u —Au=f inU; (1)
u=g onl; '

Proof: If (0 be another solution, w=u -0 solves

Set
e(t):fwz(x,t)dx (0<t<T)
U
Then
é(t)=2_[wwtdx
U
=2J.WAWdX
V]
=—2[|Dw* dx <0
U
and so

e(t)<e(0)=0 (0<t<T)
Consequently w=u—ad in U;.
(b) Backwards Uniqueness

For this, suppose U and U are both smooth solutions of the Heat equation in U; , with the same boundary
conditions on oU .

u—-Au=0in  U; )
u=g ondUx[0,T] -
0 —-AG=0in U
.2
{ d=g ondUx[0,T] @
for some function g.
Theorem: Suppose u,d e C*(U; ) solve (1) and (2). If u(x,t)=0(xt) (xeU)then
u=a within U; .
Proof: Write w=u —U and set
e(t):J.WZ(x,t)dx (0<t<T)
U
Then
é(t)=—2|Dwf" dx )
U

Also
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&(t) =—4[ Dw.Dwdx
=4jAwwtdx (4
=4J.(Aw)zdx

Since w=0 on oU |,
I| Dw|2 dx = —J wAWdX
U U

[ o) [ omr

From (3) and (4)

< ( J wzdx][4 ! (Aw)® dx}

=e(t)&(

Hence

s(t)e(t)=(e(t)) (0<t<T) .. (9)
Now if e(t)=0forall 0<t<T, we are done. Otherwise there exists an interval [t,,t,] = [0, T ] with

e(t)>0 for t; <t<t,, e(t,)=0 ... (6)
Write

f(t)=loge(t) (t,<t<t,) .(D
Then

-4t
If 0<7 <Lt <t<t, then
f((1-7)t +et)<(1-7) f (t,)+7f (1)
Also
e((1-7)y +2t)<e(t) "e(t),
and so
O<e((l-r)y+rt,)<e(t) "e(t,)” (0<7<l)

This inequality implies e(t) =0 for all times &, <t <1, a contradiction,
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WAVE EQUATIONS

Structure

4.1 Wave Equation — Solution by spherical means

4.2 Non-homogeneous equations

4.3 Energy methods for Wave Equation
4.5 Wave Equation
The homogeneous Wave equation is

u, —Au=0 (D)

and the non-homogeneous Wave equation

Uy —Au=f )

Here t>0 and x €U , where U < R"is open. The unknown is U:U x[0,00) = R,u=u(x,t), and the
Laplacian A is taken with respect to the spatial variables X = (X1 Xn). In equation (2) the function
f :U x[0,00) > Riis given.

Remarks: 1. The Wave equation is a simplified model equation for a vibrating string (n=1). For n=2, it
is membrane and it becomes an elastic solid for n=3. u(x,t) represents the displacement in some direction
of the point x at time t > O for different values of n.

2. From physical perspective, it is obvious that we need initial condition on the displacement and velocity
at time t=0.

Solution of Wave equation by spherical means (for n=1)

Theorem: Derive the solution of the initial value problem for one-dimensional Wave equation
Uy —Ug =0 in Rx(0,0) .o (D)
u=g,u =h on Rx{t=0} .. ()

where g, h are given at time t=0..

Proof: The PDE (1) can be factored as

(2+QJ(Q—Eju—u -u, =0 3
ot ox)\ot ox o - 3)
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Set

0 0
v(x,t)_(a—&ju(x,t) .. (4)
Then, equation (4) becomes
Vo (X,t)+v, (xt)=0 (xeR,t>0) .. (5

Equation (5) becomes the transport equation with constant coefficient (b=1).

Let v(x,0)=a(x) ... (6)

We know that the fundamental solution of the initial-value problem consisting of transport equation (5)
and condition (6) is

v(x,t)=a(x-t),xeR,t>0 . (D
Combining equation (4) and (7), we obtain
U (xt)—u, (xt)=a(x—t) in Rx(0,) .. (8
Also
u(x,0)=g(x) in R .. (9)

By virtue of initial condition (2), Equations (8) and (9) constitute the non-homogeneous transport
problem. Hence its solution is

t
u(x,t (x+1) +Ia x+ s—t)( —s)ds
0

X+t

:g(x+t)+EIa(y)dy - (10)  (x+t-2s=Y)

x—t

The second initial condition in (2) imply
a(x)=v(x,0)
=U,(x,0)-u,(0,0)

=h(x)-g'(x),xeR .. (11)
Substituting (11) into (10)

x+t

u(x,t)=g(x+t)+ I[h -g'(y)]dy

X+t

_[g X+t)+g(x— t]+lj h(y)dy ...(12)

for xeR,t>0.

This is the d” Alembert’s formula.
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Application of d’ Alembert’s Formula
Initial/boundary-value problem on the half line R, = {X > O} .

Example: Consider the problem

Uy — Uy in R, x(0,0)
=g, U =h on R, x{t=0} ..(1)
u=0 on {x=0}x(0,0)

where g, h are given, with

9(0)=0,h(0)=0. . ()

Solution: Firstly, we convert the given problems on the half-line into the problem on whole of R We do
so by extending the functions u, g,hto all of R by odd reflection method as below we set.

~(x,t):{ u(xt) forx>0,t>0

(—xt) forx<0,t>0 - ©)

g(x) forx>0
-g(x) forx<0 -3

- 109, 0

x) forx<0

Now, problem (1) becomes

l]tt :Uxx in RX(O,OO)} (6)

(=§,0, =honRx{t=0}

Hence, d’ Alembert’s formula for one-dimensional problem (6) implies

X+t

G(x,t :—[g X+1)+g(x- t]+1_|. h(y)dy (7)

X—t

Recalling the definition of U, g,ﬁ in equations (3)-(5), we can transform equation (7) to read for
x>0,t>0

%[g(x+t)+g(x—t)]+% J. h(y)dy

o if x>t>0
u(xt)= » _ (8)

%[g(xﬂ)—g(t—x)}r% J. h(y)dync Osxs<t

—X+t

Formula (8) is the solution of the given problem on the half-line R, = {x > 0} .
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Solution of Wave Equation (for n=3)

Theorem: Derive Kirchhoff’s formula for the solution of three-dimensional (n=3) initial-value problem

U;~AU=0 in R®x(0,) (1)
u=g on R°x{t=0} ..(2)
U=h on R®x{t=0} ..(3)

Solution: Let us assume that u € C? (R3 x[O,oo)) solves the above initial-value problem.

As we know

U(xr,t)= gg u(y,t)ds(y) ..(4)

B(x,r)
defines the average of U(.,t)over the sphere dB(X,r). Similarly,

G(xr)= <j> g(y)ds(y) (5)

oB(x,r)

H(xr)= c_f> h(y)ds(y) ...(6)

oB(x,r)
We here after regard U as a function of r and t only for fixed x.
Next, set

U=ru, ..(7)

(N

=rG,H =rH .(8)
We now assert that U solve

U,-U,=0in R, x(0,)
U=G on R x{t=0}
) R+><{t=O}
U=0 on {r=0}x(0,x)

...9)

We note that the transformation in (7) and (8) convert the three-dimensional Wave equation into the
one-dimensional Wave equation.

From equation (7)

Utt = rUtt

2
= r{u v +FUr}, Laplacian for n=3



Wave Equations

125

:(L]r)rzurr ... (10)
The problem (9) is one the half-line R, ={r >0}.

The d’ Alembert’s formula for the same, for 0 <r <t is

r+t

U(x;r,t)=%[G(r+t)—é(t—r)]+% [ H(y)dy L
From (4), we find
u(xt)= IirQU (x;r,t) ... (12)

Equations (7),(8),(11) and (12) implies that

r
G(t+r)-G(t- b
!LT{ (‘|‘r)2r ( r)+%tIrH(y)dy}
=G'(t)+H(t) (13)
Owing then to (13), we deduce
u(x,t)%{t $ g(y)ds(y)}+{t $ h(y)ds(y)} .(14)
aB(x,t) aB(x,t)
But
aB(fm)g(y)ds(y):a/B(Ll)g(tz)ds(z) ... (15)
Hence
%{(ﬁ g(y)ds(y)}z SB {Dg(x+tz)}.zds(z)
B{x.t) 8(0,1)
- Dg(y).(yzxjds(y) ... (16)

oB(x,t)

Now equation (14) and (16) conclude
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u(x,t)= <ﬁ [g(y)+{Dg(y)}.(y—x)+th(y)]ds(y) (17)

oB(x,t)

for XER3,t>0,

The formula (17) is called KIRCHHOFF’S formula for the solution of the initial value problem (1)-(3)

in 3D.

4.6 Non-Homogeneous Problem

Now we investigate the initial-value problem for the non-homogeneous Wave equation
{un ~Au=f in R"x(0,00)

u=0,u, =00onR"x{t =0} (D

Motivated by Duhamel’s principle, which says that one can think of the inhomogeneous problem as a set
of homogeneous problems each starting afresh at a different time slice t = to. By linearity, one can add up
(integrate) the resulting solutions through time to and obtain the solution for the inhomogeneous problem.

Assume that U=U(X,t;s) to be the solution of

{ Uy (- S)-Au(.,s)=0 in R"x(s,o0)
u(.,s)=0

. (2
)=0,u,(s)= f (s)onR"x{t =3 @)
and set
t
u(x,t):ju(x,t;s)ds (xeR"t=0) ...3)
0
Duhamel’s principle asserts that this is solution of equation (1).
Theorem: Solution of Non-homogeneous Wave Equation
Let us consider the non-homogeneous wave equation
U, —Au = f in R"x(0,00)
g
u=0,u =00nR"x{t =0} M
fe C[%}l(R” x[O,OO)) and n>2. Define uas
t
u(x,t):ju(x,t;s)ds (xeR"t=0) .2
0

Then
(i)ueC?(R"x[0,x))



Wave Equations

127

(ii)U, —AU=Tf in R"x(0,00)

(iii) lim u(xt)=0, lim u,(xt)=0 foreach point x’<R" (xeR",t>0).

( t)—)(xo,O) (%, t)—)(x O)

n+1 n n+2
Proof: (i) If nis odd, [2}4—7 and if nis even, [2}1:7

Also u(.,.;s) e C*(R"x[s,)) foreach s> 0and so ueC*(R"x[0,)).
Hence u e C?(R" x[0,)).

(ii) Differentiating u w.r.t t and x by two times, we have

t
u, (x,t xtt+jutxts jt(x,t;s)ds
0

U, (X, t)=u, (x,t;t)+

O t—

u, (x,t;s)ds

=f(xt)+

[y S——

U, (x,t;s)ds

Furthermore,

t

Au(x,t)= IAu(x,t;s)ds = Iun (x,t;s)ds

0

Thus,

U (X, t)-Au(xt)=f(xt) xeR"t20

(iii) And clearly u(x,0)=u,(x,0)=0 for x e R". Therefore equation (2) is the solution of equation (1).

Examples: Let us work out explicitly how to solve (1) for n=1. In this case, d” Alembert’s formula gives

X+t—s

u(x,t;s):% _[ f(y,s)dy

X—t+s

t X+t—s

u(x,t):%j _[ f (y,s)dyds

0 x—t+s

. ltX+S
ie. _EIIf y,t—s)dyds (xeR,t20)

0 x-s

For n=3, Kirchhoff’s formula implies
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u(xt;s)=(t—s) 4> f(y,s)dsS

OB(x,t—s)

So that
t
u(x,t)=I(t—s)( 4) f(y,s)dSst
0 0B(x,t-s)
1 f(y,s)
= dsd
ar '([aB(xIts) t—s
=ij [ P21 g
472.0(’)8(xr) r
Therefore,
flyt—ly—x
u(xt) 1 (t-ly |)dy (xeR%t=0)
70 B(xt) |y—X|

solves (4) for n=3.
The integrand on the right is called a retarded potential.
4.7 Energy Methods

There is the necessity of making more and more smoothness assumptions upon the data g and h to ensure
the existence of a C? solution of the Wave equation for large and large n. This suggests that perhaps some
other way of measuring the size and smoothness of functions may be more appropriate.

(a) Uniqueness

Let UcR"be a bounded, open set with a smooth boundaryoU , and as usual set
U, =Ux(0,T],I'; =U; —U,, where T>0. We are interested in the initial/boundary value problem

u,—Au=fin U;
u=g on T, . (D
u=h onUx{t=0}

Theorem: There exists at most one function u e C?(U; ) solving (1).

Proof: If Gis another such solution, then w:=u—U solves

w,—Aw=0in  U;
w=0 on I}
w,=0 onUx{t=0}

Set “energy”
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e(t)=%L_[vw2(x,t)+‘Dw(x,t)‘2dx (0<t<T)

Differentiating e(t), we have

é(t)= jwtvvn + Dw.Dw, dx
U
= J.Wt (W, —Aw)dx =0
U

There is no boundary term since w=0, and henceW, =0, on oUx[0,T]. Thus for all
0<t<T,e(t)=e(0)=0,and so W, DwW=0withinU;. Since w=0on Ux{t=0}, we conclude
w=u—-0=0inU;.

(b) Domain of Dependence

As another illustration of energy methods, let us examine again the domain of dependence of solutions
to the Wave equation in all of space.

(xo, to)

B(xo, to-t)

Cone of dependence

For this, suppose u e C? solves

U, ~Au=0 jn R" x(O,oo)
Fix X, € R",t, >0and consider the cone

C={(xt)|0<t<ty|x—x|<t,—t}.





