
 

  

CHAPTER-3 

HEAT EQUATIONS 

Structure 

3.1 Heat Equation – Fundamental solution 

3.2 Mean value formula 

3.3 Properties of solutions 

3.4 Energy methods for Heat Equation 

3.1 Definition: The non- homogeneous Heat (Diffusion) equation is 

 ,tu u f x t                   … (1) 

where nx U R  ,  : 0,f U R   ,  : 0,u U R   , the Laplacian   is taken w.r.t. spatial 

variable x, and the function f is given while we have to solve this equation for the unknown function u. 

 If ( , ) 0f x t  , then the equation  

                                                 0
t

u u                                           …  (2) 

is known as homogeneous heat equation. 

Physical interpretation: In typical applications, the Heat equation represents the evolution in time of the 

density u of some quantity such as Heat, chemical concentration, etc. If V U  is any smooth subregion, 

the rate of change of the total quantity within V equals the negative of the net flux through V . 

                                                    ˆ.
V V

d
udx F ds

dt




    

F  being the flux density. Thus 

                                                      tu divF                                                …  (3) 

where V is arbitrary. 

Theorem: (Fundamental Solution) 

 Find the fundamental solution of homogeneous Heat equation  

         0 [0, ) ...(1)tu u in U     

where nU R  is open. 
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Proof: It can be seen from the equation (1) that first order derivate involves w.r.t. to t and second order 

derivate w.r.t. the space variables 1 2
, ,...,

n
x x x  .  Consequently, if u solves the equation (1), so does

2( , ) for u x t R   . 

So, we seek a solution of equation (1) of the form 

                                                       
1

,
x

u x t v
t t
 

 
   

 
                             ….  (2) 

for , 0. Here, ,nx R t     are constants to be determined and the function : nv R R  must be find. 

Put 
x

y
t

  in equation (2), we have  

                                                          
1

,u x t v y
t

                                  ... (3) 

Differentiating (3) w. r. t. t and x 

                                                    
1 1

yDv
u v y
t

t t

 

 


 

 
  

                                                   
1

2
u v

t
 

  


 

Using these expression in equation (1) and simplifying 

                                                       2 1

1
0v y yDv v

t 
 


                         … (4) 

Now, we simplify the equation (4) by putting 
1

2
   , so that the transformed equation involves the 

variable y only and the equation is  

                                                       . 0v y y Dv v                                    … (5) 

We seek a radial solution of equation (5) as  

                                                        v y w r   where  r y                              ….(6) 

where :w R R .  

From equation (5) and (6), we have 

     
2

3

'( ) '( )                  ( )

1
and  ''( ) '( )

i

i i

i

y

i i

y y

i

y y
v w y w y y r

y r

y yr
v w r w r

r y r r
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1

" '
n

v y w r
r


 

    
 

 

Using value of ( )v y  in equation (4), we get 

                                                          
1

" ' 0
2

r n
w w w

r


 
    
 

                    …  (7) 

Now, if we set  
2

n
   and multiply by 1nr  in equation (7).  

Then we have 

                                                            
 

1
'

' ' 0
2

n

n
r w

r w                                  … (8) 

Integrating equation (8) 

                                                    
1 '

2

n
n r w

r w a    , where a is a constant 

Assuming   lim , ' 0
r

w w


 , we conclude   0a  , so 

                                                                      
1

'
2

w rw                                        … (9)   

Integrating again, we have some constant b 

                                                                     
2

4
r

w be


                                     …. (10) 

where b is the constant of integration. 

Combining (2) and (10) and our choices for ,  , we conclude that  

                                                                      
2

2 4
n

xb
e

tt


  solves the Heat equation (1) 

To find b, we normalize the solution 

                                                                       , 1
nR

u x t dx   

                                                                      

2

4

2

1
n

x
t

n

R

b
e dx

t



  

                                                                      
2

2 1
n

n

b
t

t
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  2

1

4
n

b


  

Here the function 

                                                           
 

 

2

4

2

1
; , 0

4,

0 , , 0

x
nt

n

n

e x R t
tx t

x R t




 

  


 

                      

is called the fundamental solution of the Heat equation. 

Remarks: (i)   is singular at the point (0,0).   

(ii) Sometimes, we write  ( , ) ,x t x t    to emphasise that the fundamental solution is radial in the 

variable r.  

Theorem: Solution of Initial value problem 

Solve the initial value (Cauchy) problem  

  
 

0 (0, ) ...(1)

0 ...(2)

n

t

n

u u in R

u g on R t

   

  
 

associated with the homogeneous Heat equation, where    n ng C R L R  .  

Proof:   Let                … (3) 

be the fundamental solution of the equation (1). From earlier article, we note that ( , ) ( , )x t x t  solves 

the Heat equation away from the singularity (0,0) and thus so does ( , ) ( , ) for each fixed nx t x y t y R  

. Consequently, the convolution 

                                             
 

 

2

4

2

1
,

4 n

x y

t
n

R

u x t e g y dy
t

 

                           

                                                                                    
nR

x y g y dy          … (4) 

Here, we will show that 

(i)    0,nu C R    

(ii)     , , 0tu x t u x t               , 0nx R t   

(iii)  
   

   
0

0

, ,0

lim ,
x t x

u x t g x


     for each point  
0 , 0nx R t   

 
 

 
2

4

2

1
, ; , 0

4

x
nt

n
x t e x R t

t
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Proof: (i) Since the function  

2

4

2

1
x

t
n

e
t



 is infinitely differentiable with uniform bounded derivative of all 

order on  ,nR    for 0  . 

So   0,nu C R   . 

(ii)     ,
n

t t

R

u x y t g y dy    

                   ,
nR

u x y t g y dy     

      0tu u          (since  x y   is a solution of Heat equation) 

(iii)  Fix 0 nx R . Since g is continuous, given 0, 0     such that     0g y g x    whenever 

         0 , ny x y R   . 

         Then if 0

2
x x


   

                           0 0, ,
nR

u x t g x x y t g y g x dy     
   

                                                        
 0

0

,

,

B x

x y t g y g x dy



     

                                                                  
 0

0

,

,
nR B x

x y t g y g x dy



     

                                                        I J                      …  (5) 

Now            ,
nR

I x y t dy      

Furthermore, if 0

2
x x


   and  0y x    then 

                0 01

2 2
y x y x y x y x


         

Thus       01

2
y x y x    

Consequently 

                         
 0 ,

2 ,
n

L

R B x

J g x y t dy
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2

0

4

2
,n

x y

t
n

R B x

c
e dy

t 

 



     

                             

 

2
0

0

16

2
,n

y x
dy

t
n

R B x

c
e

t 

 



   

                             

2

116

2

0
r

nt
n

c
e r dr

t 

 

    as  0t   

Hence, if 0

2
x x


   and t>0 is small enough,    0, 2u x t g x   . 

The relation implies that 

0

0

( , ) ( ,0)

, 0

lim ( , ) ( )
n

x y x

x R t

u x t g x




 

   

Thus, we have proved that equation u(x,t) given by equation (4) is the solution of the initial value 

problem. 

Theorem: Non-homogeneous Heat Equation 

 Solve the initial value problem  

  
 

(0, )

0 0

n

t

n

u u f in R

u on R t

   

  
 

associated with the non-homogeneous Heat equation, where   2

1 0,nf C R   and f  has compact 

support.  

Proof:  

       Define u  as 

                           
 

   

2

4

2
0

1
, ,

4 n

x yt
t s

n

R

u x t e f y s dyds

t s

 




  
              , 0nx R t        …(1) 

                                                                 
0

, ,
n

t

R

x y t s f y s dyds                          … (2) 

where   2

1 0,nf C R     and f  has compact support. 

Then 

(i)   2

1 0,nu C R    
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(ii)      , , ,tu x t u x t f x t         , 0nx R t   

(iii)
   

 
0, ,0

lim , 0
x t x

u x t


   for each point 0 nx R    , 0nx R t   

Proof: (i) Since   has a singularity at (0,0) we cannot differentiate under the integral sign. Substituting 

the variable 0, 0x y t s     and again converting to original variable. 

                                                        
0

, , ,
n

t

t

R

u x t y s f x y t s dyds      

Since   2 0,nf C R    and  ,y s is smooth near 0s t  , we compute 

                                   
0

, , ,
n

t

t t

R

u x t y s f x y t s dyds      

                                                             , ,0
nR

y t f x y dy               (By Leibnitz’s rule) 

                                  
2 2

0

, , ,
n

t

i j i jR

u
x t y s f x y t s dyds

x x x x

 
   

         , 1,...,i j n  

Thus,    2 2, 0,n

t xu D u C R   . 

(ii) Now 

        
0

, , , ,
n

t

t x

R

u x t u x t y s f x y t s dyds
t

   
         

   

   , ,
n

t

y

R

y s f x y t s dyds
s



   
        
   

   
0

, ,
n

y

R

y s f x y t s dyds
s


   

        
      

                                                               I J K                    … (3) 

Now 

                                               2

0

,
n

t L L
R

J f D f y s dyds c



  
                         

Also, we have 

     ( , ) ( , )
n

t

y

R

I y s f x y t s dyds
s





  
      

  
      

   , ,0
nR

y t f x y dy    

                                                         , ,
nR

y f x y t dy K                                    … (4) 

   , ,0
nR

y t f x y dy  

   , ,0
nR

y t f x y dy  

   , ,
nR

y f x y t dy    
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Since  solves the Heat equation. 

Combining (2) –(4), we have 

                                               
0

, , lim , ,
n

t

R

u x t u x t y f x y t dy


 


      

                                                                              ,f x y                  , 0nx R t   

(iii)                                       
0

, , ,
n

t

R

u x t y s f x y t s dyds      

                                       
     

0

,n n

n

t

L R L R

R

u f y s dyds     

                                                         
0

t

f ds f t   

Taking limit as 0t   

                                         
0

lim , 0
t

u x t


  for each  nx R . 

3.2 Mean-Value Formula for the Heat Equation 

Let nU R  be open and bounded. Fix a time 0T  . 

Definition: The parabolic cylinder is defined as  

                                                                      0,TU U T   

and the parabolic boundary of TU  is denoted by T  and is defined as  

                                                                        T T TU U    
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Interpretation: We interpret TU  as being the parabolic interior of  0,U T . We must note that TU

include to top  U t T  . The parabolic boundary T  comprises the bottom and vertical sides of 

 0,U T , but not the top. 

Definition (Heat ball): For fixed ,nx R t R  and 0r  , we define 

                                               1 1
, ; , t and ,n

n
E x t r y s R s x y t s

r

 
       
 

 

 , ;E x t r is a region in space-time. Its boundary is a level set of fundamental solutions  ,x y t s    

for the Heat equation. The point  ,x t  is at the centre of the top.  , ;E x t r  is called a Heat ball.   

 

 

     Heat Ball         

3.2.1 Theorem: Mean-Value Property for the Heat Equation 

 Prove that 

                                                             
  

2

2

, :

1
, ,

4 n

E x t r

x y
u x t u y s dyds

r t s





                 … (1) 

for each Heat ball  , ; TE x t r U . It is assumed that  2

1 Tu C U  solve the homogeneous Heat equation  

                                                                  0tu u    in   0,nR                               … (2) 

Proof: The formula (1) is known as mean-value formula. We find that the right hand side of (1) involves 

only  ,u y s  for times s t . It is reasonable, as the value  ,u x t should not depend upon future times. We 

may assume upon translating the space and time coordinates that 

                                                                   0, 0x t                                                            … (3) 

So we can write Heat ball as 

                                                                   0,0;E r E r                                                      … (4) 
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and set 

                                        
 

2

1
,

E r

y
r u y s dyds

r s
    

                                             
 

2

2

2

1

,
E

y
u ry r s dyds

s
         (by shifting the variable)              … (5)                         

Differentiating (5), we obtain 

                                
 

2 2

2
11

' 2
i

n

i y s

iE

y y
r y u ru dyds

s s




     
      

   
     
  

                                    
 

2 2

1 2

1
2

ii y sn

E r

y y
y u u dyds

r s s

     
      

   
     

     (Again shifting to original ball)                 

                                                               A B                                                                      … (6) 

We introduce the useful function 

                                                   
2

log 4 log
2 4

yn
s n r

s
                                              … (7) 

Then 

                                                    0,            on       E r                                                   …(8) 

Since, 

                                                   , ny s r      on   E r                                                     …(9) 

be definition of Heat ball. 

Now, we use (7) to write 

                                                
 

1
1

1
4

i

n

s i yn
iE r

B u y dyds
r






   

                                                    
 

1
1

1
4 4

i

n

s sy in
iE r

nu u y dyds
r

 




                                     … (10) 

There is no boundary term since 0   on   E r . 

Integrating by parts with respect to s, we find 

                                             
 

1
1

1
4 4

i

n

s y i sn
iE r

B nu u y dyds
r

 




     

                                                 
 

2

1 2
1

1
4 4

2 4i

n

s y in
iE r

yn
nu u y dyds

r s s
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1
1

1 2
4

i

n

s y in
iE r

n
nu u y dyds A

r s





     

This implies 

                                         ' r A B    

                                                    

 
1

1

1 2
4

i

n

y in
iE r

n
n u u y dyds

r s





 
    

 
  

                                                   
 

1
1

1 2
4

i i i

n

y y y in
i E r

n
nu u y dyds

r s





    = 0 

Therefore,   is constant. 

Thus                                  
 

 
2

20 0

1
lim 0,0 lim 4 0,0

nt t
E t

y
r t u dyds u

t s
 

 

  
   

  
                  …(11) 

                                        
   

2 2

2 2

1

1
4

n

E t E

y y
dyds dyds

t s s
                                                       …(12) 

From equation (4) and (11), we write 

                                                     
1

,
4

u x t r                                                                   …(13) 

From (5) and (13), we have 

                                             
  

2

2

, ;

1
, ,

4 n

E x t r

x y
u x t u y s dyds

r t s





                                        … (14) 

Hence proved. 

3.3 Properties of Solution 

3.3.1 Theorem: Strong Maximum Principle for the Heat Equation 

Assume    2

1 T Tu C U C U   solves the Heat equation in TU . Then 

(i) max max
T TU

u u


  

(ii) Furthermore, if U is connected and there exists a point  0 0, Tx t U  such that 

                                                            0 0, max
TU

u x t u  

Then  u  is constant in 
0t

U . 

Proof: Suppose there exists a point  0 0, Tx t U with 
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                                                               0 0, max
TU

u x t M u   

It means that the maximum value of u occur at the point (x0,t0). 

Then for all sufficiently small r>0, 

                                                                 0 0, ; TE x t r U  

By using the mean-value property, we have 

                                                           0 0,M u x t  

                                                                
  0 0

2

0

2

, ; 0

1
,

4 n

E x t r

x y
u y s dyds M

r t s


 


                    … (1) 

Since 

                                                       
  0 0

2

0

2

, ; 0

1
1

4 n

E x t r

x y
dyds

r t s





  

Form equation (1), it is clear that equality holds only if u is identically equal to M  within  0 0, ;E x t r . 

Consequently 

                                                ,u y s M   for  all    0 0, , ;y s E x t r  

Draw any line segment L in TU  connecting  0 0,x t with some other point  0 0, Ty s U , with 0 0s t . 

Consider 

                                             0 0 0min , int , ,r s s u x t M for all po s x y L s t t       

Since u is continuous, the minimum is attained. Assume 0 0r s .Then 

                                            0 0,u z r M  

for some point   0 0,z r  on TL U  and so 

                                                 u M  on  0 0, ;E z r r  for all sufficiently small r>0 

Since  0 0, ;E z r r  contains  0 0L r t r     for some small 0  , which is a contradiction. 

Thus  

                                       0 0r s  

Hence 

                                          u M  on  L                                                                  …(2) 
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Now fix any point x U and any time 00 t t  . There exists points  0 1, ,..., ,mx x x x  such that the line 

segments in nR connecting  1ix   to ix  lie in U  for  1,...,i m . (This follows since the set of points in U

which can be so connected to 0x
 
by a polygonal path is nonempty, open and relatively closed in U ).  

Select times 0 1 ... mt t t t    . Then the line segments in 1nR   connecting  1 1,i ix t  to   , 1,...,i ix t i m  

lie in TU . According to step 1, u M on each such segment and so  ,u x t M . 

Remark: 1. From a physical perspective, the maximum principle states that the temperature at any point 

x inside the road at any time (0 )t T   is less than the maximum of the initial distribution or the 

maximum of temperature prescribed at the ends during the time interval [0,t].  

2. The strong maximum principle implies that if U is connected and    2

1 T Tu C U C U   satisfies 

                                     
 

0 in

0 on 0,

on 0

t Tu u U

u U T

u g U t

  


  
   

                   

where 0g  , then u is positive everywhere within TU
 
if g is positive somewhere on U . This is another 

illustration of infinite propagation speed for disturbances. 

3. Similar results holds for minimum principle just by replacing “max” with “min”. 

3.3.2 Theorem: Uniqueness on bounded domains 

 Let  Tg C  ,  Tf C U . Then there exists at most one solution    2

1 T Tu C U C U  of the 

initial/boundary-value problem 

                                                           Tt

T

Uu u f in

u g on

 



                                 …  (1) 

Proof: If u u are two solutions of (1). Then 

   Tt

T

Uu u f in

u g on

 



                                                        …  (2) 

and  

 
t T

T

Uu u f in

on
u g


 


 

                                                                                … (3) 

Let  w u u   ,  then from equation (2) and (3), we have 

    ( ) 0t t tw w u u u u        
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 0
T

w on    

apply previous theorem to  w u u  
 
to get the result. 

3.3.3 Regularity 

Theorem: Smoothness 

Suppose 
2

1 ( )Tu C U solves the heat equation in TU . Then  

                                                                    Tu C U  

This regularity assertion is valid even if u attains non-smooth boundary value on T . 

Proof: We write  

                                                    2, ; , ,C x t r y s x y r t r s t       

To denote the closed circular cylinder of radius r , height 2r , and top centre point  ,x t  . Fix 

 0 0, Tx t U and choose 0r  so small that  0 0, ; TC C x t r U  . 

Define also the smaller cylinder 

                                                  0 0 0 0

3
' , ; , " , ;

4 2

r
C C x t r C C x t

   
    

   
, 

which have the same top centre point  0 0,x t . Extend 0  in   00,nR t C   

Assume that  Tu C U
 
and set      , , ,v x t x t u x t    0,0nx R t t    

Then 

                                            , 2 .t t tv u u v u D Du u             

Consequently 

                                            0v   on  0nR t                            … (1) 

and 

                                              2 .t tv v u D Du u f            in   00,nR t  

Now, set 

                                                    
0

, , ,
n

t

R

v x t x y t s f y s dyds      

We know that 
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00,

00

n

t

n

in R tv v f

on R tv

  


 
                             …  (2) 

Since ,v v A for some constant A , previous theorem implies v v , i.e. 

                                                
0

, , ,
n

t

R

v x t x y t s f y s dyds      

Now suppose  , "x t C . As 0  of the cylinder C, (1) and (3) imply 

                                           

              , , , , , 2 , . ,s

C

u x t x y t s y s y s u y s D y s Du y s dyds           

Integrate the last term by parts: 

                                    

              , , , , 2 , . , ,s y

C

u x t x y t s y s y s D x y t s D y s u y s dyds           
   

If u satisfies only the hypotheses of the theorem, we derive (4) with u u

  replacing ,u  being the 

standard mollifier in the variables x and t, and let 0  . 

Formula (4) has the form 

                                               , , , , ,
C

u x t K x t y s u y s dyds             , ''x t C  

where 

                                            , , , 0K x t y s   for all points  , 'y s C  

Since 1   on 'C . 

Note that K  is smooth on 'C C . 

We see u is C within 0 0

1
'' , ;

2
C C x t r

 
  

 
 

Theorem: Local Estimate for Solutions of the Heat Equation 

There exists for each pair of integers k, l=0,1,…, a constant ,k lC  such that  

                                                       1

,

2 2 , ;
, ;

2

max
k lk l

x t k l n L C x t rr
C x t

C
D D u u

r   
 
 
 

  

for all cylinder    , ; , ;
2 T

rC x t C x t r U   and all solutions u of the Heat equation in TU . 
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Proof: Fix some point in TU . Upon shifting the coordinates, we may as well assume the point is (0,0). 

Suppose first that the cylinder    1 0,0;1C C  lies in TU . Let 
1 1

0,0;
2 2

C C
   

   
   

 

Then 

                                             
 1

, , , , ,
C

u x t K x t y s u y s dyds                   
1

,
2

x t C
  

   
  

 

for some smooth function K . 

Consequently, 

                                              
 1

, , , , ,k l l k

x t t x

C

D D u x t D D K x t y s u y s dyds   

                                                                   
  1 1kl L C

C u  

for some constant klC . 

Now suppose the cylinder    0,0;C r C r lies in TU .  Let    0,0;
2 2

r rC C . 

We define  

                                                 2, ,v x t u rx r t  

Then 0tv v  in the cylinder  1C .  

According to (1) 

                                         
  1 1

,k l

x t kl L C
D D v x t C v                  

1
,

2
x t C

  
   

  
 

But                                    2 2, ,k l l k k l

x t x tD D v x t r D D u rx r t  

and                                
     1 121

1
nL C L C r

v u
r 

  

Therefore, 

                                          
    12 2

2

max k l kl
x t l k n L C rrC

C
D D u u

r   
  

Note: If u solves the Heat equation within TU , then for each fixed time 0 t T  , the mapping 

 ,x u x t  is analytic. However the mapping  ,t u x t is not in general analytic. 



Heat Equations 119 

 

3.4 Energy Methods 

(a) Uniqueness 

Theorem: There exists at most one solution  2

1 Tu C U of 

                                                 Tt

T

Uu u f in

u g on

 



                               …  (1) 

Proof: If u  be another solution, w u u  solves 

Set 

                                           2 ,
U

e t w x t dx                     0 t T   

Then 

                                           2 t

U

e t ww dx   

                                                   2
U

w wdx   

                                                   2
2 0

U

Dw dx    

and so 

                                          0 0e t e               0 t T   

Consequently   w u u    in  TU . 

(b) Backwards Uniqueness 

 For this, suppose u  and u are both smooth solutions of the Heat equation in TU , with the same boundary 

conditions on U . 

                                                      
 

0

0,

Tt
Uu u in

U Tu g on

 


 
                           … (1) 

                                                       
 

0

0,

Tt
Uu u in

U Tu g on

 


 
                          …  (2) 

for some function g. 

Theorem: Suppose  2, Tu u C U  solve (1) and (2). If    , ,u x t u x t    x U then 

                                                                u u  within TU . 

Proof: Write w u u  and set 

                                                                   2 ,
U

e t w x t dx            0 t T   

Then 

                                                                 
2

2
U

e t Dw dx                                     …   (3) 

Also 



120 Partial Differential Equations 

                                                                  4 . t

U

e t Dw Dw dx    

                                                                          4 t

U

ww dx                                        … (4) 

                                                                            
2

4
U

w dx   

Since w=0 on U , 

                                                              2

U U

Dw dx w wdx     

                                                                                    

1 1
2 2

22

U U

w dx w dx
   

    
   
   

From (3) and (4) 

                                                           
2

2 24
U

e t Dw dx
 

  
 
  

                                                                         
22 4

U U

w dx w dx
  

   
  
   

                                                                          e t e t  

Hence 

                                                              
2

e t e t e t             0 t T                    … (5) 

Now if   0e t  for all 0 t T  , we are done. Otherwise there exists an interval    1 2, 0,t t T with 

                                                           0e t   for 1 2t t t  ,  2 0e t                          … (6) 

Write 

                                                          logf t e t            1 2t t t                             … (7) 

Then 

                                                      
 

 

 

 

2

2
0

e t e t
f t

e t e t
    

If 1 20 1, t t t     then 

                                                               1 11 1f t t f t f t         

Also 

                                                           
1

1 11 ,e t t e t e t
 

 


    

and so 

                                                           
1

1 2 1 20 1e t t e t e t
 

 


       0 1   

This inequality implies   0e t   for all times 1 2t t t  , a contradiction.  



 

  

CHAPTER-4 

WAVE EQUATIONS 

Structure  

4.1 Wave Equation – Solution by spherical means 

4.2 Non-homogeneous equations 

4.3 Energy methods for Wave Equation 

4.5 Wave Equation 

The homogeneous Wave equation is  

                                              0ttu u                        …  (1) 

and the non-homogeneous Wave equation 

                                              ttu u f                       …   (2) 

Here 0t   and x U , where nU R is open. The unknown is    : 0, , ,u U R u u x t    , and the 

Laplacian  is taken with respect to the spatial variables  1,..., nx x x . In equation (2) the function 

 : 0,f U R   is given. 

Remarks: 1. The Wave equation is a simplified model equation for a vibrating string (n=1). For n=2, it 

is membrane and it becomes an elastic solid for n=3. u(x,t) represents the displacement in some direction 

of the point x at time 0t   for different values of n. 

2. From physical perspective, it is obvious that we need initial condition on the displacement and velocity 

at time t=0. 

Solution of Wave equation by spherical means (for n=1) 

Theorem: Derive the solution of the initial value problem for one-dimensional Wave equation  

                                                  0tt xxu u   in  0,R                         …   (1) 

                                                           , tu g u h   on  0R t                         … (2) 

where g, h are given at time t=0.. 

Proof:  The PDE (1) can be factored as 

                                                          0tt xxu u u
t x t x

     
      

     
                … (3) 
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Set 

                                                            , ,v x t u x t
t x

  
  

  
                              … (4) 

Then, equation (4) becomes 

                                                             , , 0t xv x t v x t              , 0x R t        … (5) 

Equation (5) becomes the transport equation with constant coefficient (b=1). 

 Let                                         ,0v x a x                                                                  … (6) 

We know that the fundamental solution of the initial-value problem consisting of transport equation (5) 

and condition (6) is 

                                                   , , , 0v x t a x t x R t                           …  (7) 

Combining equation (4) and (7), we obtain 

                                                       , ,t xu x t u x t a x t    in  0,R                    …   (8) 

Also 

                                                      ,0u x g x  in R                                              … (9) 

By virtue of initial condition (2), Equations (8) and (9) constitute the non-homogeneous transport 

problem. Hence its solution is 

                                     
0

, 1

t

u x t g x t a x s t s ds        

                                             
1

2

x t

x t

g x t a y dy





                             … (10)       2x t s y     

The second initial condition in (2) imply 

                                                       ,0a x v x  

                                                                  ,0 0,0t xu x u   

                                                                  ' ,h x g x x R                                          … (11) 

Substituting (11) into (10) 

                                                        
1

, '
2

x t

x t

u x t g x t h y g y dy





       

                                                                    
1 1

2 2

x t

x t

g x t g x t h y dy





                   …(12) 

for , 0x R t  . 

This is the d’ Alembert’s formula. 
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Application of d’ Alembert’s Formula 

Initial/boundary-value problem on the half line  0R x   . 

Example: Consider the problem 

                                                     

 

 

   

0,

, 0 ...(1)

0 0 0,

tt xx

t

u u in R

u g u h on R t

u on x





  


   
    

                                  

where g, h are given, with   

                                   0 0, 0 0g h  .                                                                    …  (2) 

Solution: Firstly, we convert the given problems on the half-line into the problem on whole of R We do 

so by extending the functions , ,u g h to all of R by odd reflection method as below we set. 

                                                       
 

 

, 0, 0
,

, 0, 0

u x t for x t
u x t

u x t for x t

  
 

   
                               … (3) 

                                                        
 

 

0

0

g x for x
g x

g x for x

 
 

 
                                                  …(4) 

                                                         
 

 

0

0

h x for x
h x

h x for x

 
 

  
                                                …(5) 

Now, problem (1) becomes 

                                                        
 

 

0,

0,

tt xx

t

u u Rin

R tonu g u h

   


   
                                               …(6) 

Hence, d’ Alembert’s formula for one-dimensional problem (6) implies 

                                                              
1 1

,
2 2

x t

x t

u x t g x t g x t h y dy





                        …(7) 

Recalling the definition of , ,u g h in equations (3)-(5), we can transform equation (7) to read for 

0, 0x t   

                    

     

     

1 1

2 2 0
,

01 1

2 2

x t

x t

x t

x t

g x t g x t h y dy
if x t

u x t
if x t

g x t g t x h y dy







 


      

 
 

       






                    …(8) 

Formula (8) is the solution of the given problem on the half-line  0R x   . 
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Solution of Wave Equation (for n=3) 

Theorem: Derive Kirchhoff’s formula for the solution of three-dimensional (n=3) initial-value problem 

                                                    0ttu u 
   

 in   3 0,R                                 …(1) 

                                                     u g     on   3 0R t                                       …(2) 

                                                     tu h   on   3 0R t                                         …(3) 

Solution: Let us assume that   2 3 0,u C R   solves the above initial-value problem. 

As we know  

                                                         
 ,

; , ,
B x r

U x r t u y t ds y


                         …(4) 

defines the average of  .,u t over the sphere  ,B x r . Similarly, 

                                                         
 ,

;
B x r

G x r g y ds y


                                 …(5) 

                                                         
 ,

;
B x r

H x r h y ds y


                              …(6) 

We here after regard U as a function of r and t only for fixed x. 

Next, set 

                                                    U rU ,                                                                  …(7) 

                                                    ,G rG H rH                                                         …(8) 

We now assert that U solve 

                                          

 

 

 

   

0,0

0

0

0 0,0

tt rr

t

RinU U

R tonU G

R tonU H

ronU







   


 


 
   

                                    …(9) 

We note that the transformation in (7) and (8) convert the three-dimensional Wave equation into the 

one-dimensional Wave equation. 

From equation (7) 

                                                       tt ttU rU  

                                                              
2

rr rr U U
r

 
  

 
, Laplacian for n=3 
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                                                              2rr rrU U   

                                                               r r
U rU   

                                                               r rr
r

U U                                            … (10) 

The problem (9) is one the half-line  0R r   . 

The d’ Alembert’s formula for the same, for 0 r t  , is  

                                                  
1 1

; ,
2 2

r t

r t

U x r t G r t G t r H y dy



 

                         … (11) 

From (4), we find 

                                                              
0

, lim ; ,
r

u x t U x r t


                                  … (12) 

Equations (7),(8),(11) and (12) implies that 

                                                              
 

0

; ,
, lim

r

U x r t
u x t

r

 
  

 
 

                                                                           
   

 
0

1
lim

2 2

t r

r
t r

G t r G t r
H y dy

r r






   
  

  
  

                                                                              'G t H t                                    …(13) 

Owing then to (13), we deduce 

                                             
 

   
 , ,

,
B x t B x t

u x t t g y ds y t h y ds y
t

 

       
    
       

                  …(14) 

But 

                                    
 

   
 , 0,1B x t B

g y ds y g x tz ds z
 

                                                   … (15) 

Hence 

                 
 

    
 , 0,1

.
B x t B

g y ds y Dg x tz zds z
t

 

   
  

   
   

                                                            
 ,

.
B x t

y x
Dg y ds y

t


 
  

 
                              … (16) 

Now equation (14) and (16) conclude 
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 ,

, .
B x t

u x t g y Dg y y x th y ds y


                                 (17) 

for 
3 , 0x R t  . 

The formula (17) is called KIRCHHOFF’S formula for the solution of the initial value problem (1)-(3) 

in 3D. 

4.6 Non-Homogeneous Problem 

Now we investigate the initial-value problem for the non-homogeneous Wave equation 

                                                 
 

 

0,

0, 0 0

n

tt

n

t

u u f in R

u u on R t

    


   
                                                 … (1) 

Motivated by Duhamel’s principle, which says that one can think of the inhomogeneous problem as a set 

of homogeneous problems each starting afresh at a different time slice t = t0. By linearity, one can add up 

(integrate) the resulting solutions through time t0 and obtain the solution for the inhomogeneous problem. 

Assume that  , ;u u x t s to be the solution of  

                                                  
   

     
 

 

., ., 0 ,

., 0, ., .,

n

tt

n

t

u s u s in R s

u s u s f s on R t s

    


   
                        … (2) 

and set 

                                                     
0

, , ;

t

u x t u x t s ds               , 0nx R t                     …(3) 

Duhamel’s principle asserts that this is solution of equation (1).                                           

Theorem: Solution of Non-homogeneous Wave Equation 

Let us consider the non-homogeneous wave equation 

 

 

0,

0, 0 0

n

tt

n

t

u u f in R

u u on R t

    


   
                                                    …  (1) 

  
1

2 0,
n

nf C R
 
     and 2n  .  Define u as 

                                                       
0

, , ;

t

u x t u x t s ds            , 0nx R t                      … (2) 

Then 

(i)   2 0,nu C R    
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(ii) ttu u f    in  0,nR    

(iii)
   

 
   

 
0 0, ,0 , ,0

lim , 0, lim , 0t
x t x x t x

u x t u x t
 

   for each point 0 nx R  , 0nx R t  . 

Proof: (i) If n is odd, 
1

1
2 2

n n  
  

 
 and if n is even , 

2
1

2 2

n n  
  

 
 

Also     2.,.; ,nu s C R s    for each 0s  and so   2 0,nu C R   . 

Hence   2 0,nu C R   . 

(ii) Differentiating u w.r.t t and x by two times, we have 

                                      
0 0

, , ; , ; , ;

t t

t t tu x t u x t t u x t s ds u x t s ds     

                                   
0

, , ; , ;

t

tt t ttu x t u x t t u x t s ds    

                                               
0

, , ;

t

ttf x t u x t s ds    

Furthermore, 

                                     
0 0

, , ; , ;

t t

ttu x t u x t s ds u x t s ds      

Thus, 

                                     , , ,ttu x t u x t f x t        , 0nx R t   

(iii) And clearly    ,0 ,0 0tu x u x   for nx R . Therefore equation (2) is the solution of equation (1). 

Examples: Let us work out explicitly how to solve (1) for n=1. In this case, d’ Alembert’s formula gives 

                                            
1

, ; ,
2

x t s

x t s

u x t s f y s dy

 

 

   

                                            
0

1
, ,

2

t x t s

x t s

u x t f y s dyds

 

 

    

 i.e.                                     
0

1
, ,

2

t x s

x s

u x t f y t s dyds





               , 0x R t              …  (5) 

For  n=3, Kirchhoff’s formula implies 
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 ,

, ; ,
B x t s

u x t s t s f y s dS
 

    

So that 

                                             
 0 ,

, ,

t

B x t s

u x t t s f y s dS ds
 

 
  
 
 

   

                                                     
 

 0 ,

,1

4

t

B x t s

f y s
dSds

t s
 


   

                                                    
 

 0 ,

,1

4

t

B x r

f y t r
dSdr

r



    

Therefore, 

                                        
 

 ,

,1
,

4
B x t

f y t y x
u x t dy

y x

 


                3 , 0x R t   

solves (4) for n=3. 

The integrand on the right is called a retarded potential. 

4.7 Energy Methods 

There is the necessity of making more and more smoothness assumptions upon the data g and h to ensure 

the existence of a 2C  solution of the Wave equation for large and large n. This suggests that perhaps some 

other way of measuring the size and smoothness of functions may be more appropriate.  

(a) Uniqueness 

Let nU R be a bounded, open set with a smooth boundary U , and as usual set 

 0, ,T T T TU U T U U     , where T>0. We are interested in the initial/boundary value problem 

                                                

 0

tt T

T

t

u u f in U

u g on

u h onU t

 


 
   

                        … (1) 

Theorem: There exists at most one function  2

Tu C U  solving (1). 

Proof: If u is another such solution, then :w u u   solves 

                                                  

 

0

0

0 0

tt T

T

t

w w in U

w on

w onU t

 


 
   

 

Set “energy” 
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221

, ,
2

t

U

e t w x t Dw x t dx                0 t T   

Differentiating e(t), we have 

                                                   .t tt t

U

e t w w Dw Dw dx   

                                                           0t tt

U

w w w dx       

There is no boundary term since w=0, and hence 0tw  , on  0,U T  . Thus for all 

   0 , 0 0,t T e t e    and so , 0tw Dw  within TU . Since 0w  on  0U t  , we conclude 

0w u u    in TU . 

(b) Domain of Dependence 

As another illustration of energy methods, let us examine again the domain of dependence of solutions 

to the Wave equation in all of space. 

 

Cone of dependence 

For this, suppose 2u C solves 

                                                         0ttu u   in  0,nR    

Fix 0 0, 0nx R t  and consider the cone 

                                                        0 0 0, 0 ,C x t t t x x t t      . 




